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ABSTRACT

Duct acoustic problems differ sharply from the pure
exterior problem in that the classical radiation conditions
do not prevent wall reflections in the former as they do in
the latter. 1In this paper we derive alternate boundary con-
ditions which do prevent wall reflections, and at the same
time can be embedded in a natural way in a Galerkin varia-

tional formulation of the duct problem.
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§1 Introduction. Wave propagation problems in layers such

as arise in underwater acoustics differ rather sharply from

pure exterior problems in the types of boundary conditions

that are appropriate. In particular, in the layered problem
the normal radiation condition can and usually does lead to
wali fefle;tions. This creétés sefious éomputaﬁional érobleﬁs
for standard finite element and finite difference appfoximations
in the sense that both these methods -- either by mapping or

by truncation -- wind up solving a problem in a bounded region.
The "conditions at infinity" implied by these techniques
invariably leads to reflections. This problem can be avoided
by reformulating the boundary value problem as an integral
equation ([1), [2]), however the latter has other computational
problems such as the need for the exact free space Green's function

which often is difficult to obtain in variable coefficient problems.




In this paper we formulate a "generalized radiation

condition" that on the one hand prevents wall reflections,

the same time, can be incorporated in a natural way into

w2
ana 2

(1

a Galerkin fype variational formulation of the problem. The
latter is used in the present work as a starting point for a
finite element scheme, however the variational principle could
be used equally well to derive finite difference schemes.

The basic ideas ;hat we use in the variational formulation
of layered problems are actually quite general. Marin [3] has
shown ﬁhat they can be effectively applied to exterior problems,
and are a natural way to blend standard finite element
approximations with integral equation techniques. In addition,
Marin has developed a theory for stability and accuracy of the
associated approximations.

In concurrent and independent work Engquist and Majda (4]
derived generalized outflow boundary conditions by using the
Fourier transform in the region exterior to the computational
region. This also quite nicely prevents wall reflections, and
in the pure exterior problem, both approaches will most likely
give similar resulvs. In the layered problem, on the other
hand, the use of the Fourier transform misses the edge or
corner effects that are built into our present approach, ana we
anticipate that there are sharp differencés between the

techniques.




§2 Mathematical Model. To fix ideas we consider an axially
symmetric acoustic potential © which satisfies the Helmholtz

equation

A9 + wch = 0 (1)

in Q subject to the boundary conditions

=0 on z= 0, 20 - O on =z = H(r) (2)

=g on r =1 3

(see Figure I) where =z denotes the vertical axis and r denotes
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Figure 1 The region Q
the radial coordinate. The problem we are addressing is the
following. Suppose {1 were truncated at some radius
r=r to give the bounded region

oo
A
0= {(r,z)e Q lro <r< roo]'

What types of boundary conditions can be given at r = Lo

that will prohibit reflections off this boundary?



To get some insight into this problem, and at the same time

see that the normal radiation condition

-a—c-‘Q = 1w =
3t 1w on r roo

is not always appropriate, let us suppose for the moment that W

is constant and
Q= {{r,z) | r<r, 0<zL H}.
Following Brekhovskikh [51 a solution exists and has the form
=0 + 9_,

where o, admit the power series

= X + 1 )
?t ap sin w z %t(gkr)

with
2 2 2 _ (2k-1) 7
O = ¥ 9 Wy = T3qH ;
and H H are the Hankel functions of the first and second

+J

kind of zero order.

We recall that these functions have the asymptotic expansions

H (D) = 2/1 exp [+ i(5 - m/4)1(5 % + 0(£¥/?)) (a)




] 5
X all k' (5)

H+(ckr) is exponentially decreasing to zero as r! oo while
H_(Gkr) is exponentially increasing to infinity. The physically

correct solution is therefore
P = cp+, » (6)

where the coefficients [a;] are determined from the boundary
condition o9 =g at r = .- Observe that in this case there

really is no problem with the boundary, and any condition that
precludes unbounded solutions is satisfactory.

In the physically more interesting case where (5) fails for
some values of ¥k, the situation is completely different.

Suppose for the moment that
Sy <w <, )

If we view ¢ as arising from the wave equation, i.e.,

iwt

b(t) =e C o,
where

2

2L . Ay,

3t



then the term

H+(olr)31n W,z

1

is associated with a wave moving to the right while
H_ (glr) sin wlz

is associated with a wave moving in the opposite direction.

Both of these terms are damped like

1/ 4r,

and the other terms are either decreasing exponentially to
zero or are unbounded as r ' oco. Thus the solution that
represents only outgoing waves at r = ro is again (6).

The important point to make is that this solution is not
determined by the radiation condition (3), and in fact, the

latter will yield nonzero values of and hence a reflected

ajs

wave

a_

1 H_(glr)sin wlz

will be added to @, -

Observe that the condition

2 = 3 (WZ—wi) P (8)




(plus boundedness) will generate the correct solution when (7)
holds. However, if

wl<...<wj<w<wj+l

for some j > 2, then (8) is no better than (3) in the sense that

it will add spurious reflections

a, H_(clr)s1n wl z +'---+'a. H_(ojr)51n wjz

3

to the physically correct solution
+ . + .
, a, H (o,x)sin W, 2+ ... + a. H (g.r) sin W, =z.
L -+ i i J + J J
What is needed then is a generalized radiation condition

20 _ =
T T () at r o (9)

that will prevent reflections in those cases where we cannot
solve the partial differential equation exactly (i.e., if w
were not constant or if e were not a rectangle.

One way to approach this problem is let W be variable

A N
inside ( Dbut assume that it is ccnstant on Q - {1, and assume

A
that 0 - @ 1is rectangular as in Figure II. In this case the

. desired solution has the representation



@
owlr,z) = X
k=1

ay H+(okr)31n wkz (10)

for r > rOD where the coefficients ak are related to the

{unknown) values of m(roo,z) by

H
@
(9) 2 C dz o(r_,z)sin wz  (11)
a = a (9 = ' z r_ ., sin :
k k Hp B (o) Ty ;l) o8 k
Thus
A0 _ i} 2
5T T(w) on T I&), (12)
where
0 v
T(p) = I ckak(m) H}(Okr)sin &kz (13)
k=1

The boundary value problem is then to solve (1) in é subject to

© =g on I'= T ;

%% = O on the top wall and ¢ = O on the bottom wall with (12)

being the outflow condition at I = Iho'
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Figure 11 The truncated region 6

Observe that the latter is a "nonlocal" boundary condition

in the sense that it couples
22 (T ,2)

at any point =z with the values of @(rOD,.) at all other
points on «r = " However, as we shall show in the next section
this does not seriously affect the computational properties of

a Galerkin - finite element formulation of this problem.

For high frequency problems where
w >> 1, (14)

our boundary condition (12) is very close to the classical

radiation condition (3). 1Indeed, suppose in addition to (14)

that w 1is not near a critical value wk sO




for all real Uk. Then
\%
H, (g r ) _
* K®© =4 o(gr )T
H (g,r ) ko
+ Yk oo
Thus

_ v R P
T(y) = E gkak(w) H+(okr)51n Wz = J@ z T sin w .z (15)

k
where
H
o
2 r ‘ .
% T H_ J dy ¢(r03,y)51n uky,
(o o) .
o
This means that
aL . _
i 2 ﬁ ~ '
nhenever o, = Yu - wk = w for those k for which

k

Oy > 0. That is, (12) reduces tc the standard radiation

condition (2) as W = oo.

10




83 A Variational Formulation. To reformulate our boundary

value problem ((1)-(2),(12)) in a variational form we use the

classical Galerkin ideas. That is, we multiply (1) by a test

A
function ¥ and integrate over , to get

j (89 + v?qlp = O

A
Q

Using Green's Theorem oOn the-first-term gives

" 2 .
J [-ve-vb + o @] + f-%% b = O
A 'y
0 38
Denoting the line r = L by Ibo and reqguiring that
satisfy
h = 0 on r = ros ) =0 on =z =0
we obtain
2 r
a(eo,d) [-ve-vdtw op) + | T(9)d = O

1t}
D>

r(D

A precise statement of the variational principle is given

below.

11

b}

(16)

(17)



Problem VP. Find a function

gradient satisfying

and for which (17) is true
gradient) satisfying (16).

Observe that

g on
0] on
for all

-— = 0 on

and Ao

are natural boundary conditions in this formulation.

To approximate the sol

I

T(®)

ution ¢

a finite dimension space Sh and 1

functions ¥ € Sh satisfying (16).

9y, € Sh which approximates g on
problem is the following.

Problem AVP. Find a o, € Sh

% T Yh on

¢ = 0] on

12

® with square integrable

r =r (18)

z =0 (19)

Y (with square integrable

z = H(z)

on T
Io'e}

of this problem we introduce
et Sg be the subspace of

In addition we select a

r = r.. Then our approximate

such that

r=r (20)
o

z =0 (21)




and such that

a(cph,z.')h) -0 (22)

for all wh € Sg-

As usual this formulation is equivalent to a system of
linear equations once a basis m?, ceey mg has been selected

h . h
for So' Indeed, since ®, - 9y € So we have

N h
. =9 .+ I q, @
h h k=1 k Tk

for some weights Qys s Qg The latter are determined by

: (22), i.e.,

N .
h h h

z a ©v.) = - a 5. )
ko1 9 (mk’ J) (gh: cwj

., N, or what is the same

Kqg = g,

where the (j,k) entry of K is

alog ) = [ -vopvdl + Py + [ 1) of (23)
o - r
(o 0]

13



The function T(mi) comes from the generalized radiation

condition(12) , thus

o;aé(éi) Hf (o,r ) sin w,z (24)

where

a(h)= 2
1 % H03H+(0Lr03)

H
le o)
L az(g )sin W,z  (25)
j z(mk(roo,z sin W,z

o

Observe that the exact evaluation of the term

r h, h
rOD

in (23) requires the summation of the series

k-
ZaL ag BL’

where
H
@
k 2 .
Oy T Y dz @ﬁ (roj,z)51n W,z
(%4 m [} (%4
. and
v
8 H+(°Lroo)
L ya H (g,r_ )
+ %L

14




Since the functions ¢£ in the basis for SE have square

integrable gradients and vanish at =z = O, it follows that

-2
o = o(t™%)
Since BL = 0(4), the terms in the series are of order O(L—3).
This is a sufficiently fast convergence so the series can be
summed without appreciable computational effort.
Howevef, for the special configuration used here it is

ncessary to retain only those terms in the series expansion of

T which correspond to values of the index 4 at which
w w
‘L < w (SaY wl’ LR ] N < w < wN+l)

. Indeed, let us denote this truncated version of T by TA

and, for purposes of illustration, solve the problem for the

m

: 8a _ .
H, with = TA(¢) on IED

case of the flat top, i.e., z = H(r) n

In doing so we find that the error is given by

(o0}
X b (r)sin(w, z)
k=N+1 k.Ak k

where the bk's are the Fourier coefficients of the data given

on r = r_ and Ak(r) is given by

15




H (03T ) H (o, r JH (g, x) - H (g T)B (gpr)

Ak(r) =

v %
H+(okro) H_(okroo)H+(okro) - H+(Gk_roo)H—(0k_ro)

Using the asymptotic expansions ( 4) and similar expansions for

the derivatives of the Hankel functions we may conclude that

-lo | (r_-x )
iAk(r)lSce k (o8] O

for ro sufficiently large and for r,Lrr g (we have used

the fact that ¢ = i[okl for kX > N + 1). Thus, for a fixed
number of terms in TA’ the error decays exponentially as a
function of r _ .

®

16




84 Numerical experiments. The numerical results reported

in this section used

o
r+1

H(r) = Hoo{l + sin B8 r} (26)
for the top boundary and

g(z) = sin ¥,z ‘ (27)

. h . . . . .
The space S consists of piecewise linear functions on a

distorted triangular grid whose nodal points are at

r, + jh(r03~r )

= 2 .
sz h Hoo(er)
for 4§, 4 =1, ..., 1/h.

The first set of experiments deals with a flat top where

x = 0.

r =1, r =10, H =1 (28)

(The exact solution ¢ 1in this case is

oplr,z) = H+(olr) sin wlz (29)

17




Figure 1 contains a plot of the approximate solution @, as

a function of r for various values of =z and
wh =1, 1/2, 1/4 (30)

with Y = 3. The second order convergence is qualitatively clear
from this figure, and was confirmed guantitatively by the authors
by direct computation of the error o - P

Observe that for the parameters (28)

_ ,2k-1
k=

hence
w w w
1S9 <Yy
for W = 3. Accordingly only one term ir the power series
expansion for T(') was used in the cormputation of By -
Figure 2 contains the analogous results for ¥ = 6 where

wy, < W < wy,

except that

wh = 2, 1, 1/2.

Two terms were used in T(-) for this ® in the computation

of @

18




Figures 3 and 4 contain plots of the difference

§ - o (31)

between N and the solution $h with the classical radiation

boundary condition ( 3 )'for w = 3 and w = 6. The difference

represents wall reflections in $h and is less severe for

w =6 than for w = 3. The reason for this wés pointed out

in Section 2 where it was noted that the generalized radiation

condition approached the classical radiation condition as w = 0.
The next set of experiments deals with a curved top

z = H(z) with H given by (26) with

o= .25, B=1.26 (32)

Figure 5 contains plots of g, as a function of r for various

values of

_ V4
Y = H(x)
for w= 3 and &h given by (30). Although the exact solution

is not known in this case, the figures indicate second order
convergence. The analogous results for W = 6 are plotted in

Figure 6, and Figures 7 and 8 contain plots of the difference

A -
®h T %n-

19




In the final figure we illustrate the importance of having
the correct number of terms in T(+). In particular, Figure 9

contains a plot of the difference

£ - ol

(2)

for w= 6 and a curved top, where Py is the approximate
solution with 4 terms in T('). For w = 6 one term is not

sufficent since w2 < w <L w3 requires»that two terms should be

used in T(*). We also computed
(1) (3)
®h T %

and there was no detectable difference, which reflects the fact

t hat these extra terms are exponentially small.

20
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Fig. 1A. w=3, a=0, real part of ¢,
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Z=1/3

real partof ¢,

=6, a=0,

w

ig. 2A.

F
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, imaginary partof ¢,

0

=0, a

Fig. 2B. w
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Fig. 3A. The difference (31), w=3, =0, z=1/3,

solid line is real part
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Fig.3B. The difference (31), w=3, a=0, z= 2/3,
solid line is real part
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Fig. 3C. The difference (31), w=3, ¢ =0, z =1,

solid line is real part
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Fig.4B. The difference (31), w =6, a=0, z=2/3,
solid line is real part
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Fig. 4A. The difference (31), w=6,a=0,z=1/3,
solid line is real part
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Fig. 4C. The difference (31),
_§oli_d line is real part
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r—2/3

Fig. 5A. w=3, curved top, real part of ¢,

32




—2/3

Fig-5B. w= 3, curved top, imaginary part of ¢

33




real part of ¢

curved top,
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Fig. 6A. w
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6, curved top,

Fig. 6B. w
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Fig. TA. The difference (31), w =3, curved top,y=1/3,
solid line is real part
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Fig. 7B.

The difference (31), w =3, curved top, y=2/3,
solid line is real part
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Fig. 7C. The difference (31), w =3, curved top, y=1,
solid line is real part
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Fig. 8A. The difference (31), w=6, curved top, y =1/3,
solid line is real part
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Fig. 8B. The difference (31), w =6, curved top,y-2/3,
solid line is real part
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6, curved top, y=1,

w

Fig.8C. The difference (31),

solid line is real part
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Fig. 9A. The difference (33), w
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solid line is real part
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Fig. 9B. The difference (33), w=6, curved top, y = 2/3,
solid line is real part
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Fig. 9C. The difference (33), w

solid line is real part
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